2012年1月24日火曜日

What Are The Symptoms Of Bird Flu In Humans

what are the symptoms of bird flu in humans

Flu Prevention Posters | Prevention Web

Variants and subtypes

Variants are identified and named according to the isolate that they are like and thus are presumed to share lineage (example Fujian flu virus like); according to their typical host (example Human flu virus); according to their subtype (example H3N2); and according to their deadliness (example LP, Low Pathogenic). So a flu from a virus similar to the isolate A/Fujian/411/2002(H3N2) is called Fujian flu, human flu, and H3N2 flu.

Variants are sometimes named according to the species (host) the strain is endemic in or adapted to. The main variants named using this convention are:

Bird flu

Human flu

Swine flu

Horse flu

Dog flu

Cat flu

Variants have also sometimes been named according to their deadliness in poultry, especially chickens:

Low Pathogenic Avian Influenza (LPAI)

Highly Pathogenic Avian Influenza (HPAI), also called: deadly flu or death flu

Most known strains are extinct strains. For example, the annual flu subtype H3N2 no longer contains the strain that caused the Hong Kong Flu.

Annual flu

Main article: Flu season

The annual flu (also called "seasonal flu" or "human flu") in the U.S. "results in approximately 36,000 deaths and more than 200,000 hospitalizations each year. In addition to this human toll, influenza is annually responsible for a total cost of over billion in the U.S." .

The annually updated trivalent influenza vaccine consists of hemagglutinin (HA) surface glycoprotein components from influenza H3N2, H1N1, and B influenza viruses.

The dominant strain in January 2006 was H3N2. Measured resistance to the standard antiviral drugs amantadine and rimantadine in H3N2 has increased from 1% in 1994 to 12% in 2003 to 91% in 2005.

"[C]ontemporary human H3N2 influenza viruses are now endemic in pigs in southern China and can reassort with avian H5N1 viruses in this intermediate host."

Structure and genetics

See also: H5N1 genetic structure

"The physical structure of all influenza A viruses is similar. The virions or virus particles are enveloped and can be either spherical or filamentous in form. In clinical isolates that have undergone limited passages in eggs or tissue culture, there are more filamentous than spherical particles, whereas passaged laboratory strains consist mainly of spherical virions."

The Influenza A virus genome is contained on eight single (non-paired) RNA strands that code for eleven proteins (HA, NA, NP, M1, M2, NS1, NEP, PA, PB1, PB1-F2, PB2). The total genome size is 13,588 bases. The segmented nature of the genome allows for the exchange of entire genes between different viral strains during cellular cohabitation. The eight RNA segments are:


HA encodes hemagglutinin (about 500 molecules of hemagglutinin are needed to make one virion) "The extent of infection into host organism is determined by HA. Influenza viruses bud from the apical surface of polarized epithelial cells (e.g. bronchial epithelial cells) into lumen of lungs and are therefore usually pneumotropic. The reason is that HA is cleaved by tryptase clara which is restricted to lungs. However HAs of H5 and H7 pantropic avian viruses subtypes can be cleaved by furin and subtilisin-type enzymes, allowing the virus to grow in other organs than lungs."

NA encodes neuraminidase (about 100 molecules of neuraminidase are needed to make one virion).

NP encodes nucleoprotein.

M encodes two matrix proteins (the M1 and the M2) by using different reading frames from the same RNA segment (about 3000 matrix protein molecules are needed to make one virion).

NS encodes two distinct non-structural proteins (NS1 and NEP) by using different reading frames from the same RNA segment.

PA encodes an RNA polymerase.

PB1 encodes an RNA polymerase and PB1-F2 protein (induces apoptosis) by using different reading frames from the same RNA segment.

PB2 encodes an RNA polymerase.

The genome segments have common terminal sequences, and the ends of the RNA strands are partially complementary, allowing them to bond to each other by hydrogen bonds. After transcription from negative-sense to positive-sense RNA the +RNA strands get the cellular 5' cap added by cap snatching, which involves the viral protein NS1 binding to the cellular pre-mRNAs. The cap is then cleaved from the cellular pre-mRNA using a second viral protein, PB2. The short oligo cap is then added to the influenza +RNA strands, allowing its processing as messenger RNA by ribosomes. The +RNA strands also serve for synthesis of -RNA strands for new virions.

The RNA synthesis and its assembly with the nucleoprotein takes place in the cell nucleus, the synthesis of proteins takes place in the cytoplasm. The assembled virion cores leave the nucleus and migrate towards the cell membrane, with patches of viral transmembrane proteins (hemagglutinin, neuraminidase and M2 proteins) and an underlying layer of the M1 protein, and bud through these patches, releasing finished enveloped viruses into the extracellular fluid.

In nonhumans

See H5N1 for the current epizootic (an epidemic in nonhumans) and panzootic (a disease affecting animals of many species especially over a wide area) of H5N1 influenza

Avian influenza

Main article: Avian influenza

Wild fowl act as natural asymptomatic carriers of Influenza A viruses. Prior to the current H5N1 epizootic, strains of Influenza A virus had been demonstrated to be transmitted from wild fowl to only birds, pigs, horses, seals, whales and humans; and only between humans and pigs and between humans and domestic fowl; and not other pathways such as domestic fowl to horse.


Wild aquatic birds are the natural hosts for a large variety of influenza A viruses. Occasionally viruses are transmitted from these birds to other species and may then cause devastating outbreaks in domestic poultry or give rise to human influenza pandemics.

H5N1 has been shown to be transmitted to tigers, leopards, and domestic cats that were fed uncooked domestic fowl (chickens) with the virus. H3N8 viruses from horses have crossed over and caused outbreaks in dogs. Laboratory mice have been infected successfully with a variety of avian flu genotypes.

Influenza A viruses spread in the air and in manure and survives longer in cold weather. It can also be transmitted by contaminated feed, water, equipment and clothing; however, there is no evidence that the virus can survive in well-cooked meat. Symptoms in animals vary, but virulent strains can cause death within a few days.

"Highly pathogenic avian influenza virus is on every top ten list available for potential agricultural bioweapon agents".

Avian influenza viruses that the OIE and others test for in order to control poultry disease include: H5N1, H7N2, H1N7, H7N3, H13N6, H5N9, H11N6, H3N8, H9N2, H5N2, H4N8, H10N7, H2N2, H8N4, H14N5, H6N5, H12N5 and others.

Known outbreaks of highly pathogenic flu in poultry 1959-2003

Year

Area

Affected

Subtype

1959

Scotland

chicken

H5N1

1963

England

turkey

H7N3

1966

Ontario (Canada)

turkey

H5N9

1976

Victoria (Australia)

chicken

H7N7

1979

Germany

chicken

H7N7

1979

England

turkey

H7N7

1983

Pennsylvania (USA)*

chicken, turkey

H5N2

1983

Ireland

turkey

H5N8

1985

Victoria (Australia)

chicken

H7N7

1991

England

turkey

H5N1

1992

Victoria (Australia)

chicken

H7N3

1994

Queensland (Australia)

chicken

H7N3

1994

Mexico*

chicken

H5N2

1994

Pakistan*

chicken

H7N3

1997

New South Wales (Australia)

chicken

H7N4

1997

Hong Kong (China)*

chicken

H5N1

1997

Italy

chicken

H5N2

1999

Italy*

turkey

H7N1

2002

Hong Kong (China)

chicken

H5N1

2002

Chile

chicken

H7N3

2003

Netherlands*

chicken

H7N7

*Outbreaks with significant spread to numerous farms, resulting in great economic losses. Most other outbreaks involved little or no spread from the initially infected farms.


1979: "More than 400 harbor seals, most of them immature, died along the New England coast between December 1979 and October 1980 of acute pneumonia associated with influenza virus, A/Seal/Mass/1/180 (H7N7)."

1995: "[V]accinated birds can develop asymptomatic infections that allow virus to spread, mutate, and recombine (ProMED-mail, 2004j). Intensive surveillance is required to detect these ilent epidemics in time to curtail them. In Mexico, for example, mass vaccination of chickens against epidemic H5N2 influenza in 1995 has had to continue in order to control a persistent and evolving virus (Lee et al., 2004)."

1997: "Influenza A viruses normally seen in one species sometimes can cross over and cause illness in another species. For example, until 1997, only H1N1 viruses circulated widely in the U.S. pig population. However, in 1997, H3N2 viruses from humans were introduced into the pig population and caused widespread disease among pigs. Most recently, H3N8 viruses from horses have crossed over and caused outbreaks in dogs."

2000: "In California, poultry producers kept their knowledge of a recent H6N2 avian influenza outbreak to themselves due to their fear of public rejection of poultry products; meanwhile, the disease spread across the western United States and has since become endemic."

2003: In Netherlands H7N7 influenza virus infection broke out in poultry on several farms.

2004: In North America, the presence of avian influenza strain H7N3 was confirmed at several poultry farms in British Columbia in February 2004. As of April 2004, 18 farms had been quarantined to halt the spread of the virus.

2005: Tens of millions of birds died of H5N1 influenza and hundreds of millions of birds were culled to protect humans from H5N1. H5N1 is endemic in birds in southeast Asia and represents a long term pandemic threat.

2006: H5N1 spreads across the globe killing hundreds of millions of birds and over 100 people causing a significant H5N1 impact from both actual deaths and predicted possible deaths.

Swine flu

Main article: Swine Flu

Swine flu (or "pig influenza") refers to a subset of Orthomyxoviridae that create influenza in pigs and are endemic in pigs. The species of Orthomyxoviridae that can cause flu in pigs are Influenza A virus and Influenza C virus but not all genotypes of these two species infect pigs. The known subtypes of Influenza A virus that create influenza in pigs and are endemic in pigs are H1N1, H1N2, H3N1 and H3N2.

Horse flu

Main article: Horse flu

Horse flu (or "Equine influenza") refers to varieties of Influenza A virus that affect horses. Horse 'flu viruses were only isolated in 1956. There are two main types of virus called equine-1 (H7N7) which commonly affects horse heart muscle and equine-2 (H3N8) which is usually more severe.

Dog flu

Main article: Dog flu


Dog flu (or "canine influenza") refers to varieties of Influenza A virus that affect dogs. The equine influenza virus H3N8 was found to infect and kill greyhound race dogs that had died from a respiratory illness at a Florida racetrack in January 2004.

H3N8

Main article: H3N8

H3N8 is now endemic in birds, horses and dogs.

Human influenza virus

Japanese commuter wearing a face mask.

"Human influenza virus" usually refers to those subtypes that spread widely among humans. H1N1, H1N2, and H3N2 are the only known Influenza A virus subtypes currently circulating among humans.

Genetic factors in distinguishing between "human flu viruses" and "avian influenza viruses" include:

PB2: (RNA polymerase): Amino acid (or residue) position 627 in the PB2 protein encoded by the PB2 RNA gene. Until H5N1, all known avian influenza viruses had a Glu at position 627, while all human influenza viruses had a lysine.

HA: (hemagglutinin): Avian influenza HA bind alpha 2-3 sialic acid receptors while human influenza HA bind alpha 2-6 sialic acid receptors. Swine influenza viruses have the ability to bind both types of sialic acid receptors.

"About 52 key genetic changes distinguish avian influenza strains from those that spread easily among people, according to researchers in Taiwan, who analyzed the genes of more than 400 A type flu viruses." "How many mutations would make an avian virus capable of infecting humans efficiently, or how many mutations would render an influenza virus a pandemic strain, is difficult to predict. We have examined sequences from the 1918 strain, which is the only pandemic influenza virus that could be entirely derived from avian strains. Of the 52 species-associated positions, 16 have residues typical for human strains; the others remained as avian signatures. The result supports the hypothesis that the 1918 pandemic virus is more closely related to the avian influenza A virus than are other human influenza viruses."

No related posts.



These are our most popular posts: what are the symptoms of bird flu in humans

KI-Media2 KI Media China reports second bird flu death this month ...

A Rense reader notes that warnings and signs of preparations to stop the spread of bird flu are all over Hong Kong right now, including electronic ... Test On Bird Flu And Human Flu Virus Hybrids Show Theyre Compatible ... read more

Swine flu Reasons and Signs or symptoms and Treatment and All ...

AS BIRD flu, or Avian Influenza, raged through Asia, countries such as Vietnam, China, Thailand, Indonesia, Cambodia, Laos, Japan, Korea and Taiwan are stepping. ... Symptoms of Avian Influenza in Humans. The reported symptoms of ... read more

Bird flu claims second victim in China

"So far, 71 people who had close contact with the victim have not developed abnormal symptoms," the health department said. He is the second man to die from bird flu in China in less than a month, after a bus driver in the ... read more

Bird Flu : A Disease You Cant Ignore

Most people with bird flu have signs and symptoms of conventional influenza. Some also develop ... read more

0 件のコメント:

コメントを投稿